
Derivatives–Part One

Reminder: In the context of the x,y plane, “vertical” means perpendicular to the x axis, or
parallel to the y axis, and “horizontal” means parallel to the x axis, or perpendicular to the y
axis. In the context of x,y, z space, “vertical” means perpendicular to the x,y plane, or
parallel to the z axis, and “horizontal” means parallel to the x,y plane, or perpendicular to the
z axis.

Suppose we have a function z  fx,y. Its graph is a surface, S, which passes the Vertical
Line Test (i.e., any vertical line intersects the surface at no more than one point). Let
P  x0,y0 be any point in the domain of f, and let z0  fx0,y0. Thus, x0,y0, z0 is a point
on S. If we view the x,y plane as a subset of x,y, z space (i.e., as the plane z  0, then P
would be the point x0,y0, 0, which would align vertically with the point x0,y0, z0.

Let L be any line in the x,y plane passing through the point x0,y0. Let  a,b  be a
direction vector for this line and also a unit vector. The parametric equations of the line are
x  x0  at, y  y0  bt. Alternatively, we can view this line in the context of x,y, z space, in
which case it lies in the plane z  0, passes through the point x0,y0, 0, has direction vector
 a,b, 0  (which is still a unit vector), and has parametric equations x  x0  at, y  y0  bt,
z  0  0t (or simply z  0.

Let V be the vertical line passing through the point x0,y0, 0. The standard basis vector k 
 0,0,1  can serve as the direction vector for this line. If we parameterize V using this
point and this direction vector, and using the variable w as our parameter, then its
parametric equations will be x  x0  0w, y  y0  0w, z  0  1w, or simply x  x0, y  y0,
z  w.

Let  be the orthogonal projection of line L into x,y, z space.  is thus a vertical plane
containing the lines L and V, as well as the points x0,y0, 0 and x0,y0, z0.

We shall impose a two-dimensional coordinate system on plane , using line L as the
horizontal axis and line V as the vertical axis. We shall refer to the former line as the t axis
and to the latter as the w axis. The point where these lines cross, x0,y0, 0, is the point
generated when t  0 and when w  0, so it serves as the origin, 0,0, in the t,w coordinate
system. Since the lines L and V were parameterized using direction vectors that were unit
vectors, t and w qualify as arclength parameters–i.e., any value of t generates a point on
line L whose distance from x0,y0, 0 is |t|, and any value of w generates a point on V whose
distance from x0,y0, 0 is |w|. Hence, any ordered pair t1,w1 corresponds to a point in the
t,w plane whose directed distance from the t axis is t1 and whose directed distance from the
w axis is w1.

The intersection of surface S and plane  is a curve, C, which passes the Vertical Line Test
(i.e., any vertical line intersects the curve at no more than one point). Hence, this curve is
the graph of a function in the t,w plane. Let us call this function g. This function can be
represented algebraically by an equation expressing w in terms of t, w  gt. We can
obtain this equation from the equation z  fx,y, if we substitute w in place of z, x0  at in
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place of x, and y0  bt in place of y, giving us w  fx0  at,y0  bt. Notice that
g0  fx0,y0  z0. Hence, the point x0,y0, z0 on surface S is the point 0, z0 on the graph
of the function w  gt, i.e., it is the w intercept of the function.

If the graph of w  gt has a nonvertical tangent line at the point 0, z0, then the slope of
that tangent line is g0. Let us refer to this tangent line as T. In the t,w coordinate
system, we may write the equation of line T in slope-intercept form: w  g0t  z0.

Line T can be interpreted as a tangent line in two ways. On the one hand, as a line in plane
, it is tangential to the curve C at the point 0, z0. On the other hand, as a line in x,y, z
space, it is tangential to the surface S at the point x0,y0, z0.

Can we write a vector equation for line T in x,y, z space? To accomplish this, we will need a
direction vector for T, and to find such a vector, we will need a second point on T. We can
easily find such a point in the t,w coordinate system. Using the equation w  g0t  z0, we
may substitute t  1, giving us w  g0  z0. So 1,g0  z0 is a point on T. Now we
convert these t,w coordinates into x,y, z coordinates, using the equations x  x0  at,
y  y0  bt, z  w. The result is x0  a,y0  b,g0  z0. So we may use the vector
 x0  a  x0,y0  b  y0,g0  z0  z0    a,b,g0  as a direction vector for line T.
Hence, the vector equation of line T is rt   x0,y0, z0   t  a,b,g0 .

T may be referred to as the tangent line at x0,y0 in the direction of  a,b . This refers
to a point and a unit direction vector in the domain of the function z  fx,y. This is simply
a compact way of saying that when the line through the point x0,y0 with unit direction
vector  a,b  is orthogonally projected into x,y, z space, the resulting vertical plane
intersects the surface z  fx,y to give us a curve whose tangent line at the point x0,y0, z0
is T.

To illustrate all these concepts, suppose z  fx,y  x2  y2, whose graph is a circular
paraboloid. Consider the point 2,3 in the x,y plane. f2,3  13, so the point 2,3,13 lies
on the graph of f. It lies directly above the point 2,3,0 in the plane z  0.

If a line L in the x,y plane passes through the point 2,3 and has unit direction vector
 a,b , then its parametric equations are x  2  at, y  3  bt. In the context of x,y, z
space, line L lies in the plane z  0, passes through the point 2,3,0, has unit direction
vector  a,b, 0 , and has parametric equations x  2  at, y  3  bt, z  0.

Let V be the vertical line passing through the point 2,3,0. Its parametric equations are
x  2, y  3, z  w.

Let us analyze three different choices for line L.

Case One: In the x,y plane, let L1 be the horizontal line (i.e., the line parallel to the x axis)
passing through the point 2,3. The two-dimensional equation of this line is y  3. This is
also the three-dimensional equation of the line’s orthogonal projection into x,y, z space,
which is a vertical plane. Notice that the plane y  3 is parallel to the x, z plane, i.e., the
plane y  0. The standard basis vector i   1,0  can serve as the direction vector for L1.
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The line’s parametric equations are x  2  1t, y  3  0t, or simply x  2  t, y  3. (We
add the third equation z  0 if we view line L1 in the context of x,y, z space.) The
intersection of the surface z  x2  y2 with the plane y  3 is a curve C1, which is the graph
of the function w  g1t  f2  t, 3  2  t2  32  4  4t  t2  9  t2  4t  13. Curve C1

is an upward-opening parabola with w intercept 0,13 and with vertex 2,9. Let T1 be the
tangent line at the point 0,13. g1t  2t  4 and g10  4. In the t,w coordinate system,
T1 has slope 4, and its slope-intercept equation is w  4t  13. In x,y, z space, T1 has vector
equation r1t   2,3,13   t  1,0,4 . T1 may be referred to as the tangent line at 2,3
in the direction of i.

Case Two: In the x,y plane, let L2 be the vertical line (i.e., the line parallel to the y axis)
passing through the point 2,3. The two-dimensional equation of this line is x  2. This is
also the three-dimensional equation of the line’s orthogonal projection into x,y, z space,
which is a vertical plane. Notice that the plane x  2 is parallel to the y, z plane, i.e., the
plane x  0. The standard basis vector j   0,1  can serve as the direction vector for L2.
The line’s parametric equations are x  2  0t, y  3  1t, or simply x  2, y  3  t. (We
add the third equation z  0 if we view line L2 in the context of x,y, z space.) The
intersection of the surface z  x2  y2 with the plane x  2 is a curve C2, which is the graph
of the function w  g2t  f2,3  t  22  3  t2  4  9  6t  t2  t2  6t  13. Curve C2

is an upward-opening parabola with w intercept 0,13 and with vertex 3,4. Let T2 be the
tangent line at the point 0,13. g2t  2t  6 and g20  6. In the t,w coordinate system,
T2 has slope 6, and its slope-intercept equation is w  6t  13. In x,y, z space, T2 has vector
equation r2t   2,3,13   t  0,1,6 . T2 may be referred to as the tangent line at 2,3
in the direction of j.

Case Three: In the x,y plane, let L3 be the oblique line passing through the point 2,3 with
unit direction vector u   0.6,0. 8 . The two-dimensional equation of this line is
4x  3y  1. This is also the three-dimensional equation of the line’s orthogonal projection
into x,y, z space, which is a vertical plane. The line’s parametric equations are x  2  0.6t,
y  3  0.8t. (We add the third equation z  0 if we view line L3 in the context of x,y, z
space.) The intersection of the surface z  x2  y2 with the plane 4x  3y  1 is a curve C3,
which is the graph of the function w  g3t  f2  0.6t, 3  0.8t  2  0.6t2  3  0.8t2 
4  2.4t  0.36t2  9  4.8t  0.64t2  t2  7.2t  13. Curve C3 is an upward-opening parabola
with w intercept 0,13 and with vertex 3.6,0. 04. Let T3 be the tangent line at the point
0,13. g3t  2t  7.2 and g30  7.2. In the t,w coordinate system, T3 has slope 7.2,
and its slope-intercept equation is w  7.2t  13. In x,y, z space, T3 has vector equation
r3t   2,3,13   t  0.6,0. 8,7. 2 . T3 may be referred to as the tangent line at 2,3 in
the direction of u   0.6,0. 8 .

The concept of slope applies only to lines in a two-dimensional coordinate system; it is not
applicable to lines in three-dimensional space. Thus, when we are dealing with a tangent
line to a surface in x,y, z space, if we refer to the slope of the tangent line, it is always
understood in the context of the vertical plane containing that tangent line. In the above
examples, the lines T1, T2, and T3 are all tangential to the surface z  x2  y2 at the point
2,3,13. When we specify that their slopes are 4, 6, and 7.2, respectively, it is understood
that the first slope is in the context of the vertical plane y  3, which contains T1, the second
slope is in the context of the vertical plane x  2, which contains T2, and the third slope is in
the context of the vertical plane 4x  3y  1, which contains T3.
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Above, we have found three different tangent lines for the surface z  x2  y2 at the point
2,3,13, corresponding to three different unit direction vectors that may be placed at the
point 2,3 in the x,y plane–namely, i, j, and  0.6,0. 8 . But since there are infinitely
many different unit direction vectors that may be placed at the point 2,3, there are
infinitely many different tangent lines for the surface z  x2  y2 at the point 2,3,13.

In the above example, the lines T1, T2, and T3 intersect at the point 2,3,13. Furthermore,
the lines are coplanar–i.e., they all lie in one plane. How do we know this? Three lines
intersecting at one point are coplanar if and only if their three direction vectors are coplanar,
and the direction vectors are coplanar if and only if their box product is 0. The direction
vectors of T1, T2, and T3 are  1,0,4 ,  0,1,6 , and  0.6,0. 8,7. 2 . You may confirm
for yourself that their box product is 0.

In fact, for the function fx,y  x2  y2, all tangent lines at the point 2,3,13 are coplanar.
In other words, there exists a unique plane, which we will call , such that every tangent line
at the point 2,3,13 lies in this plane. We refer to this plane as the tangent plane for the
surface z  x2  y2 at the point 2,3,13

To write an equation for the plane , we need a point in the plane and a normal vector. We
already have the point, namely, 2,3,13. To find a normal vector, we can compute the
cross product of the direction vectors for T1 and T2.  0,1,6    1,0,4    4,6,1 .
Hence,  has equation 4x  2  6y  3  1z  13  0, or 4x  6y  z  13. Notice that in
this last equation, the coefficient of x is the slope of T1, the coefficient of y is the slope of T2,
and the right side of the equation is the value of z0. (As we shall see later on, the right side
of the equation of the tangent plane does not always turn out to be z0. We’re getting such a
nice result here because fx,y  x2  y2 is such a nice, symmetrical function.)

Although in this example, all tangent lines at the point 2,3,13 are coplanar, this is not
necessarily true in all situations. It is possible that a surface z  fx,y could have a point
x0,y0, z0 for which its infinite collection of tangent lines may not be coplanar. In other
words, there might not be one plane containing all the tangent lines. In this case, we would
say the surface has no tangent plane at the point x0,y0, z0, or we can say that the tangent
plane does not exist (or is undefined) at this point. If all tangent lines at x0,y0, z0 are
coplanar, i.e., if the tangent plane does exist at x0,y0, z0, then we say the function f is
differentiable at this point. Alternatively, we can say f is differentiable at x0,y0, referring
to the point in the domain of f that gives rise to the point x0,y0, z0 on the graph of f.

Thus, the function fx,y  x2  y2 is differentiable at the point 2,3,13 on its graph, or at the
point 2,3 in its domain.

In Calculus I, we learned the following principle: Say we have a function y  fx. Let x0 be
a point in its domain. Suppose the function has a nonvertical tangent line at x0. Then the
slope of this tangent line is known as the derivative of f at x0, and is denoted fx0. It
represents the instantaneous rate of change of the function at x0.
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This idea can be adapted to Calculus III. Say we have a function z  fx,y. Let x0,y0 be
a point in its domain. Suppose the function has a nonvertical tangent line at x0,y0 in the
direction of a unit vector u   a,b . Then the slope of this tangent line is known as the
derivative of f at x0,y0 in the direction of u, and is denoted Du fx0,y0. It represents the
instantaneous rate of change of the function at x0,y0 in the direction of u. This kind of
derivative–i.e., a derivative in a specified direction–is known as a directional derivative.

Returning to our original example, for the function fx,y  x2  y2,
 Since T1 was the tangent line at 2,3 in the direction of i, and since its slope was 4,

we can say that the derivative of f at 2,3 in the direction of i is 4, i.e., Di f2,3  4.
 Since T2 was the tangent line at 2,3 in the direction of j, and since its slope was 6,

we can say that the derivative of f at 2,3 in the direction of j is 6, i.e., Dj f2,3  6.
 Since T3 was the tangent line at 2,3 in the direction of u   0.6,0. 8 , and since

its slope was 7.2, we can say that the derivative of f at 2,3 in the direction of u 
 0.6,0. 8  is 7.2, i.e., Du f2,3  7.2.

In our discussion so far, we have found all our directional derivatives by means of algebraic
substitution involving the variables t and w. This is not the most efficient method for finding
directional derivatives. Our next step is to study efficient techniques.
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In Case One, the function w  g1t was obtained by passing a line through the point 2,3
with unit direction vector i   1,0 . In Case Two, the function w  g2t was obtained by
passing a line through the point 2,3 with unit direction vector j   0,1 . In Case Three,
the function w  g3t was obtained by passing a line through the point 2,3 with unit
direction vector u   0.6,0. 8 . In each case, we obtained a quadratic function with w
intercept 0,13. Each of these three quadratic functions has a tangent line at this point.

g0 is the slope of the tangent line to the curve C at its z intercept in the t, z plane. But this
curve was obtained by intersecting the graph of the function fx,y with a vertical plane
determined by a point x0,y0 and a unit vector u   a,b . Consequently, we may refer to
g0 as the directional derivative of fx,y at the point x0,y0 in the direction of the
unit vector u. This is denoted Du fx0,y0.

To illustrate, consider the function z  fx,y  x2  y2, whose graph is a circular paraboloid
and whose domain is the entire x,y plane. Consider the point 1,8 in the x,y plane.
f1,8  65, so the point 1,8,65 lies on the graph of f.

We shall consider three different directional derivatives for this function at the point 1,8,
based on three different unit vectors.

First, consider the unit vector i   1,0 . The line through 1,8 with direction vector i has
the vector equation rt   1  t, 8 . For points on this line, x  1  t and y  8. By
substitution, fx,y  1  t2  82  t2  2t  65  gt. This is an upward-opening parabola
in the t, z plane, whose z intercept is 0,65 and whose vertex is the second-quadrant point
1,64. gt  2t  2, so g0  2. Thus, Di f1,8  2.

Second, consider the unit vector j   0,1 . The line through 1,8 with direction vector j
has the vector equation rt   1,8  t . For points on this line, x  1 and y  8  t. By
substitution, fx,y  12  8  t2  t2  16t  65  gt. This is an upward-opening
parabola in the t, z plane, whose z intercept is 0,65 and whose vertex is the
second-quadrant point 8,1. gt  2t  16, so g0  16. Thus, Dj f1,8  16.

Third, consider the unit vector u   3
5 ,

4
5 . The line through 1,8 with direction vector u

has the vector equation rt   1  3
5 t, 8 

4
5 t . For points on this line, x  1  3

5 t, and
y  8  4

5 t. By substitution, fx,y  1  3
5 t

2  8  4
5 t

2  t2  14t  65  gt. This is an
upward-opening parabola in the t, z plane, whose z intercept is 0,65 and whose vertex is
the second-quadrant point 7,16. gt  2t  14, so g0  14. Thus, Du f1,8  14.
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The above analysis illustrates the basic concept, but there is another way to obtain the
same results, which is generally much easier. Instead of setting up a new coordinate
system and then using substitution, we can instead use a process known as partial
differentiation.

The directional derivative of fx,y at a point x0,y0 in the direction of i (or, in other words,
parallel to the x axis) is known as the partial derivative of fx,y with respect to x at
x0,y0. It is denoted fxx0,y0 or

f
x x0,y0 . Here is how we find it:

1. Start with the formula expressing fx,y in terms of the two independent variables
x and y.

2. Treat y as if it were a constant, and differentiate the formula with respect to x.
3. Evaluate the resulting formula at the point x0,y0, i.e., substitute x0 in place of x

and y0 in place of y, then do the math.

The directional derivative of fx,y at a point x0,y0 in the direction of j (or, in other words,
parallel to the y axis) is known as the partial derivative of fx,y with respect to y at
x0,y0. It is denoted fyx0,y0 or

f
y x0,y0 . Here is how we find it:

1. Start with the formula expressing fx,y in terms of the two independent variables
x and y.

2. Treat x as if it were a constant, and differentiate the formula with respect to y.
3. Evaluate the resulting formula at the point x0,y0, i.e., substitute x0 in place of x

and y0 in place of y, then do the math.

Note that in the case of both partial derivatives, we must differentiate before we evaluate.
This is exactly the same principle we learned in Calculus I. For instance, say you want to
find the slope of the tangent line to the curve y  x3 at the point 4,64. You first
differentiate y with respect to x, giving you y  3x2. Then you substitute 4 for x, giving you
y  342  48. You cannot substitute 4 in place of x until after you have differentiated!

When finding either partial derivative, the result of Step 2 is a formula which, in general, will
involve both x and y. In any particular case, it is possible that either variable could drop out,
leaving a formula involving only one variable. It is even possible that both variables will drop
out, leaving a constant. However, the general case is a formula involving both x and y.
 When partially differentiating with respect to x, the result of Step 2 is denoted fxx,y

or f
x .

 When partially differentiating with respect to y, the result of Step 2 is denoted fyx,y
or f

y .

For fx,y  x2  y2, fxx,y 
f
x  2x and fyx,y 

f
y  2y. At the point 1,8, we get

fx1,8 
f
x 1,8  21  2 and fy1,8 

f
y 1,8  28  16.

Next, we must learn how do we find a directional derivative for any unit vector other than i or
j. But before we do so, we must introduce a key concept, known as the gradient vector.

7



For any function fx,y, its gradient vector is denoted f, and is defined as
f   fxx,y, fyx,y   

f
x ,

f
y . If this vector is evaluated at a point x0,y0, we obtain

fx0,y0   fxx0,y0, fyx0,y0 .

For fx,y  x2  y2, f   2x, 2y , and f1,8   2,16 .

For any unit vector u, if we wish to find Du fx0,y0, simply compute the dot product of u and
fx0,y0. In other words, Du fx0,y0  u  fx0,y0.

For instance, if fx,y  x2  y2 and u   3
5 ,

4
5 , then Du f1,8   3

5 ,
4
5    2,16 

 6
5  64

5  70
5  14.

We already had this result. Let’s find a directional derivative where we don’t already know
the answer. If fx,y  x2  y2 and u   1

2
, 1

2
, then Du f1,8   1

2
, 1

2
   2,16 

 2

2
 16

2
 14

2
, or 7 2 .

In all the examples considered so far, we have focused on the point 1,8. There is nothing
special about this point. Our formulas apply equally well at any other point. For instance,
let us continue to address the function fx,y  x2  y2, but shift our attention to the point
7,13. Then:
 fx7,13 

f
x 7,13  14

 fy7,13 
f
y 7,13  26

 f7,13   14,26 
 For u   3

5 ,
4
5 , Du f7,13   3

5 ,
4
5    14,26   42

5  104
5  62

5

 For u   1

2
, 1

2
, Du f7,13   1

2
, 1

2
   14,26   14

2
 26

2
 40

2
, or

20 2 .

Let us now consider a completely fresh example:
z  fx,y  3x5  7x2y4  9y2  4x  6y  12.
 fxx,y 

f
x  15x4  14xy4  4

 fyx,y 
f
y  28x2y3  18y  6

 fx6,2 
f
x 6,2  18,100

 fy6,2 
f
y 6,2  8,022

 f   15x4  14xy4  4, 28x2y3  18y  6 
 f6,2   18,100, 8,022 

 For u   1
2 ,

3
2 , Du f6,2   1

2 ,
3
2    18,100, 8,022   9,050  4,011 3
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In general, since there are infinitely many different unit vectors, a function z  fx,y has
infinitely many different directional derivatives at a given point x0,y0. Each of these
directional derivatives is the slope of a tangent line to the graph of the function f. In other
words, the graph of the function is a surface, which we may name S. If z0  fx0,y0, then
x0,y0, z0 is a point on the surface S. At this point, there are infinitely many tangent
lines–i.e., there are infinitely many lines tangential to the surface (since we can approach
x0,y0 along infinitely many different linear paths).

Under a special condition known as differentiability (to be discussed shortly), all of these
tangent lines lie in a unique plane, which is known as the tangent plane to the surface at
the point x0,y0, z0. The equation of the tangent plane is
z  fx0,y0   x  x0,y  y0   z0, or
z  fxx0,y0x  x0  fyx0,y0y  y0  z0.

The tangent plane may be thought of as the graph of a linear function,
Lx,y  fxx0,y0x  x0  fyx0,y0y  y0  z0. This is known as the linearization of fx,y
at the point x0,y0. You can also call it the linear approximation of the function at x0,y0.

Notice that Lx0,y0  0  0  z0  z0. Thus, Lx0,y0  fx0,y0. When x,y  x0,y0,
Lx,y serves as an approximation to fx,y. The approximation is generally good when
x,y is close to x0,y0, and is generally poor when x,y is far away from x0,y0.

Let dx be the deviation of x from x0, and let dy be the deviation of y from y0. In other words,
dx  x  x0 and dy  y  y0. It follows that x  x0  dx and y  y0  dy, and so
x,y  x0  dx, y0  dy.

When x,y changes from x0,y0 to x0  dx, y0  dy, fx,y changes from fx0,y0  z0 to
fx0  dx, y0  dy. We denote this change as f.
f  fx0  dx, y0  dy  fx0,y0  fx0  dx, y0  dy  z0.

When x,y changes from x0,y0 to x0  dx, y0  dy, Lx,y changes from Lx0,y0  z0 to
Lx0  dx, y0  dy. We denote this change as L.
L  Lx0  dx, y0  dy  Lx0,y0  Lx0  dx, y0  dy  z0.

Just as Lx,y  fx,y, likewise L  f.

Lx0  dx, y0  dy  fxx0,y0x0  dx  x0  fyx0,y0y0  dy  y0  z0 
fxx0,y0dx  fyx0,y0dy  z0.

So L  fxx0,y0dx  fyx0,y0dy  z0  z0  fxx0,y0dx  fyx0,y0dy.

We define this quantity to be the differential of the function f, denoted df. By definition,
df  L. Hence df  f.

Since we have z  fx,y, we may write dz in place of df.
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All of this is analogous to what we do in Calculus I...

Say we have a function, y  fx. At x0, the slope of the tangent line is fx0. If y0  fx0,
then the tangent line has the equation y  y0  fx0x  x0, or y  fx0x  x0  y0. We
may think of this as a linear function, Lx  fx0x  x0  y0, known as the linearization of
fx at the point x0.

Let dx be the deviation of x from x0. dx  x  x0, so x  x0  dx.

When x changes from x0 to x0  dx, fx changes from fx0  y0 to fx0  dx. We denote
this change as f. f  fx0  dx  fx0  fx0  dx  y0.

When x changes from x0 to x0  dx, Lx changes from Lx0  y0 to Lx0  dx. We denote
this change as L. L  Lx0  dx  Lx0  Lx0  dx  y0. But
Lx0  dx  fx0x0  dx  x0  y0  fx0dx  y0, so
L  fx0dx  y0  y0  fx0dx.

We define this quantity to be the differential of the function f, denoted df, i.e., df  fx0dx.
By definition, df  L. Hence df  f.

Since we have y  fx, we may write dy in place of df.
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